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In the code above, a “−1” is used in the vector of residuals to remove the
first item from the residual series (Fig. 4.13). (For a fitted AR(1) model, the
first item has no predicted value because there is no observation at t = 0; in
general, the first p values will be ‘not available’ (NA) in the residual series of
a fitted AR(p) model.)

By default, the mean is subtracted before the parameters are estimated,
so a predicted value ẑt at time t based on the output above is given by

ẑt = 2.8 + 0.89(zt−1 − 2.8) (4.23)
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Fig. 4.13. The correlogram of residual series for the AR(1) model fitted to the
exchange rate data.

4.6.3 Global temperature series: Fitted AR model

The global temperature series was introduced in §1.4.5, where it was apparent
that the data exhibited an increasing trend after 1970, which may be due to
the ‘greenhouse effect’. Sceptics may claim that the apparent increasing trend
can be dismissed as a transient stochastic phenomenon. For their claim to be
consistent with the time series data, it should be possible to model the trend
without the use of deterministic functions.

Consider the following AR model fitted to the mean annual temperature
series:

> www = "http://www.massey.ac.nz/~pscowper/ts/global.dat"

> Global = scan(www)

> Global.ts = ts(Global, st = c(1856, 1), end = c(2005, 12),

fr = 12)

D 
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> Global.ar <- ar(aggregate(Global.ts, FUN = mean), method = "mle")

> mean(aggregate(Global.ts, FUN = mean))

[1] -0.1383

> Global.ar$order

[1] 4

> Global.ar$ar

[1] 0.58762 0.01260 0.11117 0.26764

> acf(Global.ar$res[-(1:Global.ar$order)], lag = 50)
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Fig. 4.14. The correlogram of the residual series for the AR(4) model fitted to the
annual global temperature series. The correlogram is approximately white noise so
that, in the absence of further information, a simple stochastic model can ‘explain’
the correlation and trends in the series.

Based on the output above a predicted mean annual temperature x̂t at
time t is given by

x̂t = −0.14 + 0.59(xt−1 + 0.14) + 0.013(xt−2 + 0.14)
+0.11(xt−3 + 0.14) + 0.27(xt−4 + 0.14) (4.24)

The correlogram of the residuals has only one (marginally) significant value
at lag 27, so the underlying residual series could be white noise (Fig. 4.14).
Thus the fitted AR(4) model (Equation (4.24)) provides a good fit to the
data. As the AR model has no deterministic trend component, the trends in
the data can be explained by serial correlation and random variation, implying
that it is possible that these trends are stochastic (or could arise from a purely
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stochastic process). Again we emphasise that this does not imply that there is
no underlying reason for the trends. If a valid scientific explanation is known,
such as a link with the increased use of fossil fuels, then this information would
clearly need to be included in any future forecasts of the series.

4.7 Summary of R commands

set.seed sets a seed for the random number generator
enabling a simulation to be reproduced

rnorm simulates Gaussian white noise series
diff creates a series of first-order differences
ar gets the best fitting AR(p) model
pacf extracts partial autocorrelations

and partial correlogram
polyroot extracts the roots of a polynomial
resid extracts the residuals from a fitted model

4.8 Exercises

1. Simulate discrete white noise from an exponential distribution and plot the
histogram and the correlogram. For example, you can use the R command
w <- rexp(1000)-1 for exponential white noise. Comment on the plots.

2. a) Simulate time series of length 100 from an AR(1) model with α equal
to −0.9, −0.5, 0.5, and 0.9. Estimate the parameter of each model and
make predictions for 1 to 10 steps ahead.

b) Simulate time series of length 100 from an AR(1) model with α equal
to 1.01, 1.02, and 1.05. Estimate the parameters of these models.

3. An AR(1) model with a non-zero mean µ can be expressed by either
xt − µ = α(xt−1 − µ) + wt or xt = α0 + α1xt−1 + wt.
a) What is the relationship between the parameters µ and α and the

parameters α0 and α1?
b) Deduce a similar relationship for an AR(2) process with mean µ.

4. a) Simulate a time series of length 1000 for the following model, giving
appropriate R code and placing the simulated data in a vector x:

xt =
5
6
xt−1 −

1
6
xt−2 + wt (4.25)

b) Plot the correlogram and partial correlogram for the simulated data.
Comment on the plots.
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